Optimization of HYAFF Membranes Morphology Produced by Supercritical Phase Separation for Biomedical Applications

نویسندگان

  • Sauro Pierucci
  • Jiří Jaromír Klemeš
  • Laura Piazza
  • Serafim Bakalis
  • Lucia Baldino
  • Stefano Cardea
  • Ernesto Reverchon
چکیده

In this study, it was evaluated the capability to generate HYAFF membranes by phase inversion assisted by supercritical fluids. HYAFF is a biopolymer, hyaluronic acid ester, much used in the pharmaceutical and biomedical applications. Several techniques have been tested to generate structures (membranes and scaffolds) for biomedical applications; but, all of them present several limitations. For these reasons, supercritical fluids assisted processes have been implemented for biomedical applications. Using SC-CO2 phase inversion process, we obtained HYAFF membranes with different morphological characteristics, depending on the process conditions adopted, such as polymer starting concentrations, pressure (ranging from 90 to 200 bar) and temperature (ranging from 35 to 55°C). The behavior of membranes structure has been studied and has been related to the ternary diagram HYAFF-DMSO-SC-CO2 analyzing the thermodynamic and kinetic aspect of the process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydophilic polypropylene microporous membrane for using in a membrane bioreactor system and optimization of preparation conditions by response surface methodology

In this study, the response surface methodology (RSM) based on the central composite design (CCD) was used to optimize the preparation condition of polypropylene-grafted maleic anhydride (PP-g-MA) microporous membrane by thermally-induced phase separation (TIPS) method. A mixture of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) was used as diluent. The effect of polymer composition and qu...

متن کامل

Tailoring the Characteristics of Poly (phenylene-ether-ether) sulfone Membrane for Efficient Glycerol/Biodiesel Separation

Poly (phenylene-ether-ether) sulfone membrane was fabricated and characterized by efficient glycerol/biodiesel separation produced from waste cooking oils trans-esterification. The membrane preparation was processed by phase inversion technique. The morphology, Physico-chemical properties and separation behavior of membranes were studied at various PPEES concentration. A uniform surface was...

متن کامل

Investigation the effect of nanocomposite material on permeation flux of polyerthersulfone membrane using a mathematical approach

Integrally skinned asymmetric membranes based on nanocompositepolyethersulfone were prepared by the phase separation process using the supercritical CO2 as a nonsolvent for the polymer solution. In present study, the effects of temperature and nanoparticle on selectivity performance and permeability of gases has beeninvestigated. It is shown that the presence of silica nanoparticles not only di...

متن کامل

Development of Palladium-Alloy Membranes for Hydrogen Separation and Purification

This paper summarizes R&D activities and progress at NORAM Engineering and the University of British Columbia (UBC) on preparation and testing of thin palladium-based membranes and their applications. Most of these activities were carried out internally at NORAM, some jointly with UBC and their spin-off company, Membrane Reactor Technology (MRT) through a wide range of projects. Key results out...

متن کامل

Impact of Carbon Nanotubes on the ‎Polymeric Membrane for Oil – Water ‎Separation

   In this research, the classical phase inversion method was used to produce the polysulfone (PSF) membrane by using three different solvents: N, N-dimethylformamide (DMF), chloroform (CHCL3) and tetrahydrofuran (THF). Furthermore, different concentrations of functionalized multi – walled carbon nanotubes (MWCNTs) were added to PSF membranes by the classical phase inversion method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017